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Abstract

In this project, we will design the tools to conduct a Lagrangian anal-
ysis of an oceanic flow whose velocity is proscribed on a spatio-temporal
grid. Our main tools in this analysis will be the so-called M -function (arc-
length over a fixed time interval) and the maximal finite-time Lyapunov
exponent, both of which help elucidate the underlying coherent structures
of the flow. After validating them, we will test these tools on a dataset
coming from a model flow of the Chesapeake Bay.

1 Introduction

Ocean currents have all sorts of large-scale coherent structures that are gener-
ally invisible to the naked eye. By coherent structure, we mean a blob of fluid
that moves as one—eddies or jets, for example [1]. Finding ways to unveil these
structures is of general interest to those who study mixing and transport. For
example, if a pollutant enters the water, it tends to stay within a single co-
herent structure, so the boundaries (or manifolds) separating different coherent
structures serve as barriers to its transport (neglecting molecular diffusion). The
classification of these structures borrows heavily from dynamical systems theory.
Of particular interest are the notions of a distinguished hyperbolic trajectory,
or DHT (the equivalent of a fixed point in a changing flow field) and stable and
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unstable manifolds (structural boundaries on which the flow is toward or away
from the DHT, respectively).

Velocity data from ocean models give us the raw material to bring out these
structures. To do so, it is useful to move from the grid-based (Eulerian) view-
point to a flow-following (Lagrangian) one. That is, set up a vast network of
fluid “particles” to be tracked through the flow, simulate their trajectories as
the flow evolves, and then analyze those trajectories to get structural informa-
tion. In Lagrangian terms, a coherent structure is nothing more than a group
of particles whose trajectories “go together” in some sense. The challenge is to
use precise quantitative tools to define what this means.

2 Approach

One way to delineate boundaries between coherent structures is to look for
places where velocity changes abruptly in a certain direction. Wherever a region
of fast-moving particles abuts a slow-moving region, a structural boundary is
evident. This will also be true if one of the regions will be moving or has been
moving faster at a time not far from the current one. In other words, if we
color each particle by how far it has traveled or will travel within a certain fixed
time interval (for example, the last two days), then color boundaries will tend
to align with structural boundaries. Thus, letting X(X0, t) be the position at
time t of the particle which began at position X0 at time t0, we introduce the
so-called M -function [2]:

Mu,τ (X∗
0, t

∗) =

∫ t∗+τ

t∗−τ

(
2 or 3∑
i=1

(
dXi(t)

dt

)2
) 1

2

dt,

which is simply the distance traveled by the particle that began at position X∗
0

over the time interval spanning forward and backward time τ from the current
time t∗.

Another way to look for transport boundaries is to look for places where a
flow bifurcates, or splits apart. If a small parcel of fluid experiences relatively
little stretching and squishing as it moves through the flow, chances are that it
stays within one coherent structure. Conversely, if it finds itself getting mas-
sively stretched (as time runs either forward or backward), chances are that it
was on the boundary between two coherent structures. Thus we need a way to
quantify the degree to which two nearby trajectories diverge in time. To that
end, we introduce the maximal finite-time Lyapunov exponent (FTLE):

λ =
1

2t
ln
(
λmax

(
LTL

))
where

L =
∂X(X0, t)

∂X0
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Figure 1: M -function coloring for a dataset from the Kuroshio current [2]. Red
represents fast-moving regions, blue slow. Stable and unstable manifolds appear
as thin yellow lines.

is the so-called transition matrix (the Jacobian of current position with respect
to initial position). An equivalent definition of λ is that, for a locally linear flow
field, it represents the maximal exponential growth rate of two infinitesimally
close trajectories passing through point X0 at time t0:

|δX(X0, t)| ≤ eλt|δX0|

These two tools, the M -function and FTLE, provide a launching point for
a Lagrangian analysis of the flow. For example, one can produce visualizations
like that in figure 1, in which the eddies, jets, and stable and unstable manifolds
are clearly visible.

3 Algorithms

There are two main computational tasks to be performed in this project: com-
putation of the particle trajectories, and analysis of those trajectories to obtain
structural information. Where applicable, both low-order and high-order meth-
ods will be implemented, for learning purposes as well as to investigate the time
feasibility of the higher-order methods. These orders will be verified in the stan-
dard way—by estimating errors over a variety of grid sizes, then estimating the
slope of a log-log plot of error versus grid spacing.
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3.1 Trajectory computation

Let u(x, t) be a continuous velocity field in two or three dimensions, i.e.

u(x, t) = (u, v) = (u(x, y, t), v(x, y, t))

in two dimensions, or

u(x, t) = (u, v, w) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))

in three dimensions. A particle trajectory X(X0, t) must then satisfy

Ẋ(X0, t) = u(X(X0, t), t)

where Ẋ denotes dX
dt . In three dimensions, for example, this boils down to the

system of differential equations

Ẋ(X0, t) = u(X(X0, t), Y (X0, t), Z(X0, t), t)

Ẏ (X0, t) = v(X(X0, t), Y (X0, t), Z(X0, t), t)

Ż(X0, t) = w(X(X0, t), Y (X0, t), Z(X0, t), t)

or, in abbreviated form,

Ẋ = u(X,Y, Z, t)

Ẏ = v(X,Y, Z, t)

Ż = w(X,Y, Z, t).

The trajectory can thus be determined from a given u by

X(X0, t
∗) =

∫ t∗

t0

u(X(X0, t), t) dt.

Applying this formula on actual velocity data presents two computational tasks.
First, if the velocity components are given only on a spatio-temporal grid, say
for example u(xi, yj , zk, tl) = ui,j,k,l, these components must be interpolated
between the grid points as the particles travel there. Second, once velocity is
interpolated, a numerical integration scheme must be chosen.

3.1.1 Velocity Interpolation

Velocity values are assumed to be given on a so-called Arakawa C-grid (in accor-
dance with the ROMS standard to be discussed later). This means that values
for the velocity components u, v, and w are assumed to be staggered within
each grid box, so that each is given at the center of a different pair of opposite
faces (figure 2). Each of these scalar components will be interpolated individu-
ally to the location of each particle. Because the third dimension (depth) differs
radically from the other two, the fields will be interpolated first horizontally,
and then vertically (in the 3D case).

4



Figure 2: Arakawa c-grid box [6]

The simplest way to interpolate horizontally is to use piecewise bilinear
functions. That is, at a fixed height zk and time tl, we define a four-parameter
bilinear function

f(x, y) = c1 + c2x+ c3y + c4xy

on [xi, xi+1]× [yj , yj+1] by fitting it to the four given values

f(xi, yj) = ui,j

f(xi+1, yj) = ui+1,j

f(xi, yj+1) = ui,j+1

f(xi+1, yj+1) = ui+1,j+1

and approximate the velocity at (x, y) by

u(x, y) ≈ f(x, y).

This simple interpolation scheme is first-order and not smooth, so as a next
step, we plan to implement bicubic interpolation, which is third-order. In this
case, we approximate u by a bicubic function

f(x, y) =

3∑
i,j=0

cijx
iyj

on the rectangle of interest. To solve for the sixteen unknowns cij , we must fit
not only to the given values of u at the rectangle corners, but also to estimated
values of the partial derivatives ∂xu, ∂yu, and ∂xyu at those four corners. These
partial derivatives can be estimated by centered finite differences using adjacent
grid points, i.e.

∂xui,j ≈
ui+1,j − ui−1,j

2∆x

∂yui,j ≈
ui,j+1 − ui,j−1

2∆y

∂xyui,j ≈
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆x∆y
,
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all of which are second order. At boundaries of the domain, these formulas must
be abandoned in favor of one-sided difference approximations.

After horizontal interpolation, we interpolate vertically to each point be-
tween two interpolated planes. A simple, non-smooth first-order scheme is
piecewise linear interpolation from the nearest neighbors directly above and
below. For a more accurate (third-order) scheme, we can interpolate a cubic
polynomial through the four nearest neighbors, two directly above and two di-
rectly below the point in question. For example, the Lagrangian form of the
cubic polynomial interpolated through points (z0, u0), (z1, u1), (z2, u2), (z3, u3)
is

f(z) =
(z − z1)(z − z2)(z − z3)

(z0 − z1)(z0 − z2)(z0 − z3)
u0 +

(z − z0)(z − z2)(z − z3)

(z1 − z0)(z1 − z2)(z1 − z3)
u1

...+
(z − z0)(z − z1)(z − z3)

(z2 − z0)(z2 − z1)(z2 − z3)
u2 +

(z − z0)(z − z1)(z − z2)

(z3 − z0)(z3 − z1)(z3 − z2)
u3

Again, one-sided interpolations must be used at the vertical boundaries.
Finally, interpolation must be done in time as well. This is a one-dimensional

problem, so we will attack it with the same tools as vertical interpolation.
Namely, piecewise linear interpolants followed by piecewise cubic.

3.1.2 Time Integration

To determine a trajectory given velocity data, we must then integrate this ve-
locity in time to get the position at each time. A simple first-order implicit
method is backward Euler, namely

Xn+1 = Xn + u(Xn+1, tn+1),

which is known to be A-stable and L-stable. For a higher-order scheme, we
will use the Milne-Hamming scheme, which is a fourth-order implicit multistep
(Adams-Moulton) predictor-corrector method. Its equations are:

X̂n+1 = Xn−3 +
4∆t

3
(2u(Xn, tn)− u(Xn−1, tn−1) + u(Xn−2, tn−2))

for the predictor and

Xn+1 =
9

8
Xn −

1

8
Xn−2 +

3∆t

8

(
u(X̂n+1, tn+1) + 2u(Xn, tn) + u(Xn−1, tn−1)

)
for the corrector. We choose this method because it is currently implemented
in the ROMS model (see section 6).

3.2 Analysis Tools

3.2.1 M-function Calculation

Since the M -function is just an arc length, it can be calculated in parallel with,
and using the same integration schemes as, the trajectory computation.
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3.2.2 Lyapunov Exponent Calculation

The two main aspects of the maximum Lyapunov exponent calculation are ap-
proximating the transition matrix L and calculating the eigenvalues of LTL.
For the two-dimensional case, we have

L(X(X0, t), t) =


∂X(X0,t)
∂X0

∂X(X0,t)
∂Y0

∂Y (X0,t)
∂X0

∂Y (X0,t)
∂Y0

 ,
and the idea is to approximate these partial derivatives using finite differences.
To that end, we initially lay four particles directly to the left and right of the
initial position of interest (with sufficiently small separation ∆X0) and up and
down (separation ∆Y0), calculate their trajectories up to the current time, and
approximate L by

X(X0+
∆X0

2 ,Y0,t)−X(X0−∆X0
2 ,Y0,t)

∆X0

X(X0,Y0+
∆Y0

2 ,t)−X(X0,Y0−∆Y0
2 ,t)

∆Y0

Y (X0+
∆X0

2 ,Y0,t)−Y (X0−∆X0
2 ,Y0,t)

∆X0

Y (X0,Y0+
∆Y0

2 ,t)−Y (X0,Y0−∆Y0
2 ,t)

∆Y0


(A higher-order method could presumably be used here as well, but this was
not discussed.) The three-dimensional case is entirely analogous.

Calculating the eigenvalues of LTL is relatively simple, since it is either
a 2 × 2 or 3 × 3 matrix, leading to a characteristic polynomial that is either
quadratic or cubic. Solving the characteristic equation thus amounts to finding
the roots of a quadratic or cubic polynomial. Both of these problems have
tractable closed-form solutions (e.g. the quadratic formula in the 2× 2 case).

4 Implementation

All programming will be done in MATLAB (currently version 2015b). The
initial runs will be on my personal laptop, a MacBook Pro with a 2.6 GHz Intel
Core i5 processor and 8 GB of memory. However, calculating trajectories, M -
functions, and FTLEs lends itself to massive parallelization (eventually about
800,000 particles in the same flow field), so we plan to eventually move to the
Deep Thought 2 cluster on the University of Maryland campus to take advantage
of its capacity for parallelization.

5 Validation

To validate our implementation, we will test it on three well-understood dynam-
ical systems: the Duffing oscillator, the Lorenz three-variable system, and Hill’s
spherical vortex. In each case, we are given a system of differential equations
specifying phase-space velocity, which can be discretized to an Arakawa c-grid.
Based on these discrete grid values, we will calculate particle trajectories and
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subsequently, create M -function and FTLE maps. These trajectories and maps
should then match the dynamics of the systems in question.

The Duffing oscillator comes about as a generalization of a harmonic oscil-
lator to the case when the restoring force is nonlinear. The undamped case we
will implement here is a common standard for testing in Lagrangian dynamics
[3]. Its dynamics look like

ẋ = y

ẏ = x− x3 + ε sin t

where ε is a parameter that can be set to zero for the unforced case. This
case has an analytical solution against which our numerical trajectories can be
judged. We will also test a variant of this, the rotating Duffing oscillator[3]:

ẋ = x sin(2βt) + y(β + cos(2βt)) + [−(x cos(βt)− y sin(βt))3 + ε sin(ωt)] sin(βt)

ẏ = x(−β + cos(2βt))− y sin(2βt) + [−(x cos(βt)− y sin(βt))3 + ε sin(ωt)] cos(βt).

The Lorenz three-variable system gives rise to the famous Lorenz attractor,
a canonical example of chaotic dynamics. Derived from a simple model of the
atmosphere, its equations are

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz.

We will be looking for trajectories that find and follow the Lorenz attractor.
Hill’s spherical vortex is a three-dimensional axisymmetric flow field de-

scribed in spherical coordinates by a streamfunction

ψ = −3

4
Ur2

(
1− r2

a2

)
sin2 θ

where θ is the polar angle (measured from the positive axis of symmetry). From
this streamfunction, radial and azimuthal velocities can be generated via

ur =
1

r2 sin θ

∂ψ

∂θ

uθ = − 1

r sin θ

∂ψ

∂r
.

which can in turn be transformed into Cartesian velocities. Again, analytical
solutions will be available for comparison, in the form of level sets of the stream-
function. One feature to look for will be the confinement of the flow to planes
through the symmetry axis, which we expect to be only approximate due to
numerical error.
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spheric Administration’s (NOAA) National Geophysical
Data Center.

ChesROMS is forced by open ocean tides and non-tidal
water level, river discharge, winds, and heat exchange
across the air–water interface. Imposed at the open ocean
boundary were nine tidal constituents from the Advanced
Circulation Model (ADCIRC) EC2001 tidal database
(Mukai et al. 2002), together with non-tidal water levels
interpolated from NOAA’s tide stations at Wachapreague,
Virginia and Duck, North Carolina. Chapman’s condition
for surface elevation (Chapman 1985) and Flather’s
condition for barotropic velocity (Flather 1976) were
applied to the barotropic component at the open ocean
boundary, while for the baroclinic component a radiation
condition was used for velocity and a radiation condition
with nudging for temperature and salinity. Climatological
temperature and salinity from the World Ocean Atlas 2001
was used for nudging (http://www.nodc.noaa.gov/OC5/
WOA01/pr_woa01.html) at the open ocean boundary. Daily
freshwater discharge data for nine major tributaries
(Susquehanna, Patuxent, Potomac, Rappahannock, York,
James, Nanticoke, Choptank, and Chester Rivers) from the
USGS were applied at the upstream river boundaries, and
river temperature was obtained from nearby CBP stations
and salinity was set to zero.

Atmospheric forcing, including 3-hourly winds, net
shortwave and downward longwave radiation, air temper-

ature, relative humidity, and pressure, was obtained from
the North America Regional Reanalysis (NARR) produced
at the National Center for Environmental Prediction (http://
www.emc.ncep.noaa.gov/mmb/rreanl/). No assimilation of
surface temperature data was performed for the simulations
presented here. A series of sensitivity studies were
conducted to finalize the model setup. The major con-
clusions of these experiments are described below.

We experimented with four of the turbulence closure
schemes that come with ROMS (Warner et al. 2005b). In
our simulations, regular Mellor–Yamada level 2.5 (Mellor
and Yamada 1982) and K-profile parameterization (Large et
al. 1994) produced similar vertical stratification while k-ω
and Mellor–Yamada level 2.5 implemented using the
generic length scale method (Warner et al. 2005b) yielded
similar density structures and slightly more stratification in
the upper Bay. For results presented here, we used k-ω as
the turbulence closure scheme for better results in the upper
Bay.

The model is also sensitive to the background mixing
and bottom friction parameters. The background viscosity
and diffusivity were set to be 5×10−5 and 0.5×10–5 m2/s,
respectively, in our final model configuration. The quadratic
bottom friction was imposed in the model with a coefficient
of 0.003.

We experimented with three different implementations of
the C&DCanal by treating it as: (1) an inflow river at different
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Fig. 1 a Model grid and bathymetry of ChesROMS and the location of the longitudinal transect; b locations of various datasets

240 Estuaries and Coasts (2012) 35:237–261

Figure 3: Curvilinear coordinates for Chesapeake ROMS model [4]

6 Testing

We will test our Lagrangian analysis tools on a velocity field generated by a
model of the Chesapeake Bay. The model was implemented using ROMS (Re-
gional Ocean Modeling System), a primitive-equations-based ocean modeling
platform that can be adopted to various geographic regions [5]. The Chesa-
peake Bay ROMS model (ChesROMS) uses a curvilinear coordinate system
molded to the shape of the bay (figure 3). For simplicity, velocity interpolation
will be done in this index space before being transformed back into real space,
although the trajectory computation will be done in real space. The irregular
boundaries can be handled via a no-slip or free-slip condition.

7 Timeline

• First Semester

– First half: October - Mid-November

∗ Project proposal presentation and paper

∗ 2D and 3D interpolation

– Second half: Mid-November - December

∗ 2D trajectory implementation and validation

∗ M function implementation and validation
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∗ Mid-year report and presentation

• Second Semester

– First half: January - February

∗ 3D trajectory implementation and validation

∗ FTLE implementation

– Second half: March - April

∗ Visualizations and further analysis

∗ Final presentation and paper

8 Deliverables

• Code

– Routines that lay down particle lattice and calculate trajectories from
velocity data

– Routines that calculate M-function and FTLE based on trajectories

• Results

– Series of visualizations (images, movies, graphs) based on these func-
tions, for Chesapeake Bay data and test problems

• Reports

– Project proposal and presentation

– Mid-year progress report and presentation

– Final paper and presentation

• Databases

– Chesapeake Bay ROMS dataset
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